Program Header

SLAS2018 Short Courses

Applications of Biophysical Methods in Small-Molecule Drug Discovery

The course will be delivered in two parts; the first section will focus on the theoretical aspects of each biophysical method in a seminar format and in the following section their practical applications will be brought to light in an open and active discussion format.

For the first section, you will receive a series of brief high-level presentations concerning the biophysical theory behind each technology and their application in lead finding, hit validation as well as more in depth mechanistic studies. This will enable you to gain a rapid overview of the most relevant biophysics/ label-free technologies for screening and lead finding/characterization.

In the second section you will be presented with some challenges on how to effectively apply those technologies by looking at a range of common scenarios from different phases of lead discovery. This will include fragment-based drug discovery, hit validation and confirmation, in-depth hit characterization and support of HTS assay development. Making use of an active and open discussion forum, you, as a part of a team, will thereby gain further insight about the usage, impact, and limitations of each biophysical technology.

Who Should Attend:

  • People interested in getting an overview about the current toolbox of affinity-based, biophysical methods currently applied in drug discovery.
  • Experts in one of the fields (biophysical technologies) that want to learn more about other orthogonal approaches.
  • Project leaders that want to understand what technologies suit their needs and how to place them correctly in finding and characterizing chemical leads.
  • Medicinal chemists that want to learn more about the generation of biophysical data used in drug design.
  • Technology providers that want to gain more insight into the needs of typical users and the limitations they experience.

Those interested in the following tracks:

How You Will Benefit From This Course:

  • Get a broad overview about what is available and state of the art in the field.
  • Comprehend which technology best fits to individual project needs and scientific questions.
  • Learn about typical applications and "best practice" as well as limitations and practical considerations.
  • Understand how the biophysics technologies relate to each other and how they augment and synergize with data from other approaches.
  • Be able to predict for a project which technology (or combinations thereof) serves best in a typical drug discovery flowchart along with its placement.

Course Topics:

  • Overview of the most relevant biochemical biophysics/ label-free technologies for screening and lead finding.
  • Main technologies discussed in more detail: Mass Spectrometry; NMR; Calorimetry (DSC, ITC); SPR; Interferometry; Resonance Waveguide Grating (aka Corning Epic); thermal protein denaturation and aggregation assays (DSF aka Thermofluor, DSLS aka Stargazer, CETSA; nanoDSF); Dynamic Light Scattering; Microscale Thermophoresis (NanoTemper).
  • Understand which technology and combinations thereof fits best to answer specific questions throughout the entire drug discovery process.
  • Grasp how biophysics can support assay development for screening and how biophysical data can be used to fuel medicinal chemistry design.

Course Pre-Reading Requirements:

General introduction into affinity-based methods and their application in Drug Discovery:
(articles which describe how the approaches work, caveats, and a summary of their impact)

  1. Integrating biophysics with HTS-driven drug discovery projects
    Folmer, Rutger H.A.
    Drug Discovery Today, March 2016, Vol.21(3), pp.491-498
    Identifier: ISSN: 1359-6446 ; DOI: 10.1016/j.drudis.2016.01.011
  2. Applications of Biophysics in High-Throughput Screening Hit Validation
    Genick, Christine Clougherty ; Barlier, Danielle ; Monna, Dominique ; Brunner, Reto ; Bé, Céline ; Scheufler, Clemens ; Ottl, Johannes
    Journal of biomolecular screening, June 2014, Vol.19(5), pp.707-14
    Identifier: E-ISSN: 1552-454X ; PMID: 24695619 Version:1 ; DOI: 10.1177/1087057114529462
  3. Biophysics in Drug Discovery: impact, challenges, and opportunities,
    Jean-Paul Renaud, Chun wa Chung, U. Helena Danielson, Ursula Egner, Michael Hennig, Roderick E. Hubbard, and Herbert Nar
    Nature Reviews, August 2016, Vol.15(10), pp. 679-98
    DOI: 10.1038/nrd.2016.123

Background Information on each technology/approach:

  • DLS:
    Making sense of Brownian motion: colloid characterization by dynamic light scattering
    Hassan, Puthusserickal A ; Rana, Suman ; Verma, Gunjan
    Langmuir : the ACS journal of surfaces and colloids, 13 January 2015, Vol.31(1), pp.3-12
    Identifier: E-ISSN: 1520-5827 ; PMID: 25050712 Version:1 DOI: 10.1021/la501789z
  • TSA:
    Thermal denaturation assays in chemical biology
    Senisterra, Guillermo ; Chau, Irene ; Vedadi, Masoud
    Assay and drug development technologies, April 2012, Vol.10(2), pp.128-36
    Identifier: E-ISSN: 1557-8127 ; PMID: 22066913 Version:1 DOI: 10.1089/adt.2011.0390
  • CETSA:
    The cellular thermal shift assay for evaluating drug target interactions in cells
    Jafari, Rozbeh ; Almqvist, Helena ; Axelsson, Hanna ; Ignatushchenko, Marina ; Lundbäck, Thomas ; Nordlund, Pär ; Martinez Molina, Daniel
    Nature protocols, September 2014, Vol.9(9), pp.2100-22
    Identifier: E-ISSN: 1750-2799 ; PMID: 25101824 Version:1 DOI: 10.1038/nprot.2014.138
  • MST:
    Microscale Thermophoresis: Interaction analysis and beyond
    Jerabek-Willemsen, Moran ; André, Timon ; Wanner, Randy ; Roth, Heide Marie ; Duhr, Stefan ; Baaske, Philipp ; Breitsprecher, Dennis
    Journal of Molecular Structure, 5 December 2014, Vol.1077, pp.101-113
    Identifier: ISSN: 0022-2860 ; DOI: 10.1016/j.molstruc.2014.03.009
  • MS:
    Affinity selection-mass spectrometry screening techniques for small molecule drug discovery
    Annis, D. Allen ; Nickbarg, Elliot ; Yang, Xianshu ; Ziebell, Michael R. ; Whitehurst, Charles E.
    Current Opinion in Chemical Biology, 2007, Vol.11(5), pp.518-526
  • NMR:
    Parallel screening of low molecular weight fragment libraries: do differences in methodology affect hit identification?
    Wielens, Jerome ; Headey, Stephen J ; Rhodes, David I ; Mulder, Roger J ; Dolezal, Olan ; Deadman, John J ; Newman, Janet ; Chalmers, David K ; Parker, Michael W ; Peat, Thomas S ; Scanlon, Martin J
    Journal of biomolecular screening, February 2013, Vol.18(2), pp.147-59
    Identifier: E-ISSN: 1552-454X ; PMID: 23139382 Version:1 DOI: 10.1177/1087057112465979
  • SPR:
    Biomolecular interaction analysis in drug discovery using surface plasmon resonance technology
    Huber, W ; Mueller, F
    Current Pharmaceutical Design, 2006, Vol.12(31), pp.3999-4021
    Identifier: ISSN: 1381-6128
  • RWG:
    Resonant waveguide grating for monitoring biomolecular interactions
    Wu, Meng ; Li, Min
    Methods in molecular biology (Clifton, N.J.), 2015, Vol.1278, pp.139-52
    Identifier: E-ISSN: 1940-6029 ; PMID: 25859947 Version:1 ; DOI: 10.1007/978-1-4939-2425-7_8
  • ITC:
    Direct measurement of protein binding energetics by isothermal titration calorimetry
    Leavitt, Stephanie ; Freire, Ernesto
    Current Opinion in Structural Biology, 2001, Vol.11(5), pp.560-566
    Identifier: ISSN: 0959-440X ; DOI: 10.1016/S0959-440X(00)00248-7
  • Xray:
    Effective and Emerging Strategies for utilizing Structure in Drug Discovery
    Brown, Ka ; Davenport, R ; Ward, Se
    Drugs Of The Future, 2015 Apr, Vol.40(4), pp.251-256 [Peer Reviewed Journal]
    Identifier: ISSN: 0377-8282 ; DOI: 10.1358/dof.2015.040.04.2314768

Instructors:

Christine Genick

Christine Genick
Novartis Institutes for BioMedical Research Basel, Chemical Biology and Therapeutics; Protein Sciences Foundational Area

Dr. Christine Genick has been working since 2000 in the field of biophysics on the development of technologies and utilization of these approaches in drug discovery. In 2009, Chris joined Novartis as a laboratory head in charge of biophysical hit validation for HTS, FBS, and focused screen follow-up. In 2015, she joined the Structural Biophysics Group and in conjunction with her current responsibilities, she is the Core Biophysics Technology Representative, which entails searching for new biophysical applications and approaches to detect small molecule binding interactions. Chris also heads the SPR Core Facility and manages various exploratory projects involving biophysics.

Stefan Geschwindner

Stefan Geschwindner
AstraZeneca R&D Mölndal, Discovery Sciences, Structure & Biophysics

Dr. Stefan Geschwindner has already during his Ph.D. worked with label-free technologies, predominantly with NMR to elucidate protein structures. Stefan joined the Astra Structural Chemistry Laboratory as a Senior Research Scientist in 1998 with focus on protein production and characterization applying a variety of biophysical methods. Before moving into his current role as Principal Scientist in Biophysics at AstraZeneca in 2006, he had different roles as Team leader in Protein Engineering as well as Delivery leader for Neuroscience. During this last decade, Stefan has frequently applied biophysical methods to facilitate the mechanistic understanding of protein-ligand interactions and to enable fragment-based lead generation approaches. He has the shared responsibility and an excellent track record for developing and implementing new biophysical approaches to aid early lead finding activities.


Our Sponsors

  • Hamilton
  • Artel
  • Corning
  • Waters
  • Agilent
  • Beckman Coulter
  • Cosmo Biotechnologies
  • Hamamatsu
  • Labcyte
  • Miltenyi Biotec
  • Tecan
  • ThermoFisher Scientific
  • Biotek
  • BMG Labtech
  • Eppendorf
  • Molecular Devices
  • Scinomix
  • StemoniX
  • Analytik Jena
  • Gilson
  • HighRes Biosolutions
  • Brooks Life Sciences
  • Covaris
  • Inheco
  • Multispan
  • SAMDI
  • American Laboratory
  • Biocompare
  • Cell Press
  • DDN News
  • DDW
  • DTR
  • GEN News
  • Labcompare
  • LabManager
  • RSC
  • Technology Networks
  • TAS
  • The Scientist
  • The Translational Scientist